Руководство пользователя РМС ТехХ 25 Про

1. Назначение приложения

РМС TexX 25 Про — desktop-приложение для проектирования и управления комплексом роботизированных устройств. Программа позволяет:

- строить граф подключённых устройств и сохранять его в файлы;
- управлять отдельными устройствами (джог-движение, запуск программ, работа с переменными);
- создавать и запускать сценарии для нескольких устройств;
- вести переписку с ИИ-помощником;
- просматривать и экспортировать логи устройств.

Все функции реализованы на базе Java FX и встроенных HTTP-клиентов, взаимодействующих с локальными Python-сервером и API роботов.

2. Требования к системе

Компонент	Требование
OC	Windows 10/11, Linux
Java	JDK 17
Maven	3.8+
Python	3.10+ с пакетами flask, pymodbus, requests
Сеть	Доступ к контролируемым устройствам по IP
Дополнительно	Для ИИ-помощника — работающий сервер языковой модели

3. Установка

pip install flask pymodbus requests myn clean install

4. Запуск

java -jar target/rms.jar

5. Окно входа

При запуске открывается стартовое окно:

- Логотип ТехХ и форма авторизации.
- Поля логина и пароля. Стандартный пользователь admin / admin.
- Кнопка «Войти» переход в админ-панель.
- Ссылка на официальный сайт и отображение версии приложения.
- Чат-помощник справа: можно задать вопрос ИИ после авторизации.

6. Администраторский интерфейс

После успешного входа отображается основное окно (AdminView).

6.1. Верхнее меню

Файл → Открыть — загрузить сохранённый граф устройств (JSON).

Файл → Сохранить — экспорт текущего графа.

Назад — возвращение к окну входа.

Выход — завершение программы.

6.2. Рабочее поле (полотно)

Панорамирование: зажать колесо мыши и перемещать.

Масштаб: Ctrl + колесо мыши.

Очистка выделения: клик по пустому месту.

Удаление выбранного: Delete или Backspace.

6.3. Панель устройств (справа)

Содержит карточки оборудования:

«Робот», «Камера», «ПЛК», «3D-принтер».

Добавление устройства:

двойной щелчок — появится диалог ввода параметров;

или перетащите карточку на полотно (Drag & Drop).

В диалоге укажите имя, ІР и порт устройства; оно появится в графе.

6.4. Подключения между устройствами

На каждом узле четыре порта (верх/право/низ/лево).

Чтобы создать связь, нажмите на порт, перетащите линию к порту другого устройства и отпустите.

Удаление связи — выделить (клик по линии) и нажать Delete.

6.5. Панель логов

Раскрывается/сворачивается стрелкой на нижней панели.

Показывает собранные логи от всех активных устройств.

Счётчики ошибок/предупреждений/информации обновляются автоматически.

6.6. Чат-помощник

Находится в правом нижнем блоке.

Для отправки сообщения нажмите Enter в поле ввода или кнопку «←». Ответы формирует локальный ИИ-модуль через langchain4j и Ollama (при наличии сервиса).

7. Работа с узлом устройства

Клик правой кнопкой мыши по узлу открывает контекстное меню:

Пункт	Описание
Переподключиться	Повторный вызов API /connect с указанным IP/портом
Управление устройством	Открывает окно DeviceControl (см. разд. 8)
Управление комплексом устройств	Появляется, если есть связующие линии; открывает окно сценариев (разд. 9).

Удаление устройства автоматически закрывает связанные процессы и соединения.

8. Окно «Управление устройством»

Открывается из контекстного меню узла.

8.1. Джог-движение

Блоки кнопок +X/-X, +Y/-Y, +Z/-Z — линейное перемещение.

Кнопки +rX/-rX, +rY/-rY, +rZ/-rZ — вращение в декартовой системе.

Блок +J1...+J6/-J1...-J6 — инкрементное движение по сочленениям.

При нажатии отправляются HTTP-команды на локальный модуль RobotApiClient.

8.2. Скорость

Слайдер со значением 0–100 %.

Кнопки +V и -V изменяют скорость ступенчато.

Текущее значение отображается справа от слайдера.

8.3. Базовая программа

Выпадающий список загружается из API робота (/api/programs).

Кнопка «►» запускает выбранную программу на устройстве.

8.4. Таблица переменных

Добавить — открывает диалог ввода имени, адреса и значения.

Удалить — удаляет выбранную строку.

Импорт — загрузка списка переменных из JSON.

Сохранить — экспорт текущих переменных в JSON.

Значения ячеек можно редактировать двойным щелчком.

8.5. Закрытие

Кнопка «Закрыть» завершает окно, не влияя на работу устройства.

9. Окно «Управление комплексом устройств»

Позволяет создавать последовательности действий для нескольких устройств.

9.1. Структура окна

Слева — список блоков-шагов (каждый шаг содержит поля «Устройство», «Программа», «Скорость»).

Снизу — панель управления.

9.2. Основные действия

Действие	Результат
+	Добавить новый шаг (появится блок с полями редактирования).
-	Удалить выбранный блок.
Перетаскивание блока	Изменение порядка шагов (Drag & Drop).
Импорт/Сохранить	Работа со сценариями в формате JSON.
▶ Запустить	Выполнить сценарий последовательно. Команды отправляются устройствам на локальные порты 8080 + id.
■ Остановить	Прервать выполнение сценария

При запуске статус шагов меняется (ожидание \rightarrow выполнение \rightarrow успех/ошибка/отмена). Если сценарий содержит несколько устройств, они могут выполняться параллельно (тип PARALLEL у поддерживающих это шагов).

10. Сохранение и загрузка графа

Сохранить: Файл → Сохранить или Ctrl+S (если настроено). Генерируется JSON-файл с устройствами и соединениями.

Открыть: Файл → Открыть — загружает ранее сохранённый граф.

11. Чат-помощник

Доступен как на экране входа, так и в админ-интерфейсе.

Введите вопрос в нижнее поле.

Нажмите или Enter.

Ответ появится в виде двух сообщений: ваше и от бота.

При отсутствии сервера ответы будут заглушками. Для полноценного режима убедитесь, что модель запущена.

12. Работа с логами

Каждое устройство собирает логи через REST-маршрут /logs.

Логи автоматически подгружаются каждые 10 сек и выводятся в нижнем текстовом поле.

Счётчики ошибок/предупреждений/информации увеличиваются при анализе логов.

Панель можно свернуть стрелкой ▲ для экономии места.

13. Завершение работы

Назад — возврат к экрану входа без выхода из приложения.

Выход — закрытие всех окон и остановка внутренних процессов.

В случае добавленных устройств их фоновые процессы автоматически завершаются.

14. Полезные советы

Перед добавлением устройства убедитесь, что IP и порт доступны.

Удаление узла немедленно завершает запущенные для него процессы (modbusProcess и sdkProcess).

Если устройство не отвечает, используйте «Переподключиться» в контекстном меню.

Регулярно сохраняйте граф и сценарии, чтобы избежать потери данных.

Соблюдение данных рекомендаций позволит эффективно использовать RMS для построения и управления робототехническими комплексами TexX.